Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Two isomorphous crotonatolanthanide complexes: tetra- μ-but-2-enoato-bis-[diaqua(but-2-enoato)Ln]-2,6-diaminopurine (1/2) (Ln = Dy and Ho). Corrigendum

Ana María Atria, ${ }^{\text {a }}$ Alan Astete, ${ }^{\text {a }}$ Maria Teresa Garland ${ }^{\text {b }}$ and Ricardo Baggio ${ }^{\text {c* }}$

${ }^{\text {a }}$ Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile, ${ }^{\mathbf{b}}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas and CIMAT, Universidad de Chile, Santiago de Chile, Chile, and ${ }^{\text {c }}$ Departamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: baggio@cnea.gov.ar

Received 24 June 2010
Accepted 25 June 2010
Online 29 June 2010

One of the figures in the paper by Atria, Astete, Garland \& Baggio [Acta Cryst. (2009), C65, m411-m414] is corrected.

In the paper by Atria et al. (2009), the 2,6-diaminopurine molecule shown in Fig. 1 is incorrect, with atoms N1, N3 and

Figure 1
A displacement ellipsoid plot of (I), drawn at the 40% probability level, with independent (symmetry-related) atoms indicated by bold (fine) bonds and filled (empty) ellipsoids. [Symmetry code: (i) $-x,-y,-z$.]

N7 appearing as protonated. The correct figure is given here. It is worth mentioning that the error only relates to this representation of the molecule; the refined model and the corresponding discussion and packing diagrams as presented in the original paper are correct.

References

Atria, A. M., Astete, A., Garland, M. T. \& Baggio, R. (2009). Acta Cryst. C65, m411-m414.

Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Two isomorphous crotonatolanthanide complexes: tetra- μ-but-2-enoato-bis-[diaqua(but-2-enoato)Ln]-2,6-diaminopurine (1/2) (Ln = Dy and Ho)

Ana María Atria, ${ }^{\text {a }}$ Alan Astete, ${ }^{\text {a }}$ Maria Teresa Garland ${ }^{\text {b }}$ and Ricardo Baggio ${ }^{\text {c* }}$

${ }^{\text {a }}$ Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile, ${ }^{\mathbf{b}}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas and CIMAT, Universidad de Chile, Santiago de Chile, Chile, and ${ }^{\text {c }}$ Departamento de Física, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: baggio@cnea.gov.ar

Received 27 August 2009
Accepted 16 September 2009
Online 7 October 2009
The title isomorphous compounds, tetra- μ-but-2-enoato-bis-[diaqua(but-2-enoato)dysprosium(III)]-2,6-diaminopurine (1/2), $\left[\mathrm{Dy}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{6}$, and tetra- μ-but-2-enoato-bis[diaqua(but-2-enoato)holmium(III)]-2,6-diaminopurine $(1 / 2),\left[\mathrm{Ho}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{6}$, consist of $\left[\mathrm{Ln}(\text { crot })_{3^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ dimers (crot is crotonate or but-2-enoate; Ln is the lanthanide cation), built up around inversion centres and completed by 2,6 -diaminopurine molecules. The lanthanide cation is coordinated by three chelating crotonate units and two water molecules. One of the chelating carboxylate groups acts also in a bridging mode sharing one O atom with both cations and the final result is a pair of DyO_{9} tricapped prismatic polyhedra linked to each other through a central $(\mathrm{Dy}-\mathrm{O})_{2}$ loop. A feature of the structures is the existence of a complex intermolecular interaction scheme involving two sets of tightly interlinked non-intersecting one-dimensional structures, one of them formed by the $\left[\mathrm{Dy}(\operatorname{crot})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ dimers (running along [100] and linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds) and the second formed by 2,6-diaminopurine molecules (evolving along [010] linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds).

Comment

We report here structural work on two isomorphous Ln complexes, formulated as $\left[\mathrm{Ln}(\operatorname{crot})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2} \cdot 2$ (dap) [crot is crotonate or but-2-enoate, and dap is 2,6-diaminopurine; $\mathrm{Ln}=$ Dy for (I) and Ho for (II)]. These are the first cases in which a free unsubstituted 2,6-diaminopurine molecule is reported to take part in a crystal structure, although some closely related substituted analogues have already been the subject of structural work (Singh \& Hodgson, 1975; Simundza et al., 1970; Sakore et al., 1969, etc.). For the sake of simplicity we
shall only describe the Dy isologue, (I), as representative of the pair of compounds, but numerical data for both compounds are freely available in the archived CIF.

The structure for the Dy complex, shown in Fig. 1, consists of $\left[\mathrm{Dy}(\operatorname{crot})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ dimers, along with 2,6-diaminopurine molecules. The dimer is build up around an inversion centre. The unique Dy cation is coordinated by three chelating crotonate units and two water molecules. One of the O atoms (O23) from one of the crotonate carboxylate groups acts also in a bridging mode, and the result is a pair of DyO_{9} polyhedra [with Dy-O distances in the range 2.3457 (17)-2.5257 (17) \AA] presenting a tricapped prismatic coordination geometry linked to form a dimer through a central $(\mathrm{Dy}-\mathrm{O})_{2}$ loop leading to a Dy. . Dy distance of 4.0407 (2) A. This type of carboxylatelinked $\left[\mathrm{Ln}(\mathrm{COO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ dimer is well known in the literature: we could trace 36 examples in a Cambridge Structural Database search (CSD; 2009 Version; Allen, 2002), the vast majority (22 cases) with acetate and only one (an isomorphous family) with butenoate (Rizzi et al., 2003, Atria et

Figure 1
A displacement ellipsoid plot of (I), drawn at the 40% probability level, with independent (symmetry-related) atoms indicated by bold (fine) bonds and filled (empty) ellipsoids. [Symmetry code: (i) $-x,-y,-z$.]
al., 2006). The dimers are further linked by hydrogen bonding (see below).

The dimensions of the crotonate ligands and 2,6-diaminopurine molecule are normal, with the non-H atoms in the latter lying in a plane (within experimental error). The most significant deviation from planarity is to be found for the amine H atoms, with a conspicuous pyramidal arrangement around N 2 (evidencing an N -atom hybridization with a significant $s p^{3}$ contribution) and a rather flattened arrangement at N6 (suggesting a predominant $s p^{2}$ character). If N pyramidality is measured by χ_{N} (the angle between the $\mathrm{C}-\mathrm{N}$
vector and the NH_{2} plane; Allen et al., 1995), for which the ideal values are 0° (for pure $s p^{2}$) and 54.7° (for pure $s p^{3}$), the corresponding values for both N atoms in the case of (I) are $\chi_{\mathrm{N} 2}=42.3^{\circ}\left(\right.$ mostly $\left.s p^{3}\right)$ and $\chi_{\mathrm{N} 6}=15.5^{\circ}\left(\right.$ mostly $\left.s p^{2}\right)$. This is consistent with the $\mathrm{C} 2-\mathrm{N} 2$ bond length $[1.360$ (3) \AA] being longer than the C6-N6 bond length [1.346 (3) A], suggesting a smaller delocalization in the former. The existence of a large number of efficient hydrogen-bonding donors and acceptors in the structure leads to a complex intermolecular interaction scheme involving two sets of tightly interlinked non-intersecting hydrogen-bonded one-dimensional structures, one of

Figure 2

A view of the packing of (I), projected down c, showing the chains of dimers and their internal hydrogen-bonding linkage (see Comment). For clarity, only the carboxylate end of the butenoate units have been drawn. [Symmetry codes: (i) $-x,-y,-z ;$ (v) $-x+1,-y,-z$.]

Figure 3
A view of the packing of (I), projected along the a axis, showing on the projection plane (running vertically, in hollow bonds) the 'solvate' chains. The chains of dimers are perpendicular to the latter and are shown coming out of the plane of the page (in bold, full bonds). Intra- and inter-chain hydrogen bonds are shown as broken lines. For clarity, only the carboxylate ends of the butenoate units have been drawn. [Symmetry codes: (i) $-x$, $-y$, $-z$; (ii) x, $y+1, z$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x+1,-y+1,-z+1$; (v) $-x+1,-y,-z$; (vi) $-x+1,-y+1,-z$; (vii) $x-1, y-1, z$.]
them running along the crystallographic a-axis direction and formed by the $\left[\mathrm{Dy}(\operatorname{crot})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}$ dimers, the second evolving along the b-axis direction and formed by 2,6-diaminopurine molecules.

Both types of chains contain two sets of inversion centres. In the case of the chain of dimers shown in Fig. 2, the same centre (site $A 1$) that relates the two molecules in the dimer through a four-atom coordination loop also links them through an $R_{2}^{2}(8)$ hydrogen-bonded ring (Bernstein et al., 1995), almost at right angles to the former loop, via $\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 11^{\mathrm{i}}$ hydrogen bonds (Table 1). The second centre (site A2) links neighbouring dimers into chains through two centrosymmetric $R_{2}^{2}(8)$ motifs involving $\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2 W^{\mathrm{v}}$ and $\mathrm{O} 2 W-$ $\mathrm{H} 2 A \cdots \mathrm{O} 12^{\mathrm{v}}$ hydrogen bonds (Table 1), as well as two noncentrosymmetric $R_{2}^{2}(6)$ motifs. A much simpler situation arises in the 2,6-diaminopurine chain (Fig. 3), which also utilizes two independent inversion centres and gives rise to two almost identical centrosymmetric $R_{2}^{2}(8)$ motifs involving $\mathrm{N} 2-$ $\mathrm{H} 2 A \cdots \mathrm{~N} 3{ }^{\text {iv }}$ and $\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{~N} 1^{\text {iii }}$ hydrogen bonds, denoted as $B 1$ and $B 2$ in Fig. 3.

The two perpendicular non-intersecting families of chains (the chain of dimers, running parallel to [100] at $y \simeq z \simeq 0$, and the 2,6-diaminopurine one, parallel to [010] at $x \simeq z \simeq \frac{1}{2}$) interact at their point of maximal approach through a variety of hydrogen bonds in which there are donors and acceptors on both sides (Fig. 3 and Table 1). These hydrogen bonds give rise to four noncentrosymmetric hydrogen-bonded rings with graph-set descriptors $R_{3}^{3}(10)$ (site $C 1$ in Fig. 3), $R_{2}^{2}(7)$ (site $C 3$), $R_{3}^{2}(9)$ (site $C 4$) and $R_{3}^{3}(10)$ (site $C 5$), and one centrosymmetric ring at site $C 2$ with graph-set descriptor $R_{4}^{4}(14)$.

There are also inter-dimeric interactions of the $\pi-\pi$ type mediated by symmetry-related crotonate double bonds, as in the case between $\mathrm{C} 21=\mathrm{C} 31$ and its $(-x,-y+1,-z)$ image, characterized by an intercentroid distance of 3.588 (1) \AA and a slippage angle of $26.6(1)^{\circ}$. These interactions link along the [001] direction the dimeric chains that run along [100].

Experimental

Complexes (I) and (II) were synthesized by similar methods. A mixture of $\mathrm{Ln}_{2} \mathrm{O}_{3}(\mathrm{Ln}=\mathrm{Dy}$ or $\mathrm{Ho}, 1 \mathrm{mmol})$ and crotonic acid (3 mmol) was dissolved in water (100 mmol), and then 2,6-diaminopurine (1 mmol) dissolved in methanol (10 ml) was added. The resulting mixture was refluxed for 24 h , filtered while hot and then concentrated to 25 ml . The filtrate was left at room temperature. On standing, colourless crystals suitable for single-crystal X-ray diffraction appeared, which were used without further processing.

Compound (I)

Crystal data

$\left[\mathrm{Dy}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{6}$
$M_{r}=1207.86$
Triclinic, $P \overline{1} \overline{1}$
$a=8.6441(2) \AA$
$b=11.1173(3) \AA$
$c=13.3944(3) \AA$
$\alpha=101.234(2)^{\circ}$
$\beta=107.521(3)^{\circ}$

$$
\gamma=106.587(2)^{\circ}
$$

$$
V=1119.51(5) \AA^{3}
$$

$$
Z=1
$$

Mo $K \alpha$ radiation
$\mu=3.39 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.18 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.60, T_{\text {max }}=0.71$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.06$
4676 reflections

Compound (II)

Crystal data
$\left[\mathrm{Ho}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{6}$
$M_{r}=1212.72$
Triclinic, $P \overline{1}$
$a=8.644$ (2) \AA
$b=11.141$ (3) \AA
$c=13.412(3) \AA$
$\alpha=101.360(3)^{\circ}$
$\beta=107.537$ (4) ${ }^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.40, T_{\text {max }}=0.65$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.072$
$S=1.35$
4612 reflections

9254 measured reflections 4676 independent reflections 4487 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

292 parameters H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.43 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$
$\gamma=106.518(4)^{\circ}$
$V=1122.9(5) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=3.58 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.22 \times 0.18 \times 0.12 \mathrm{~mm}$

8804 measured reflections 4612 independent reflections 4337 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	D \cdots A	$D-\mathrm{H} \cdots A$
N9-H9...O22	0.88	1.91	2.775 (3)	166
N6-H6B \cdots O12 ${ }^{\text {i }}$	0.88	2.43	3.257 (3)	157
N6-H6A \cdots N1 ${ }^{\text {ii }}$	0.88	2.42	3.300 (3)	175
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 3^{\text {iii }}$	0.88	2.32	3.190 (3)	171
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 13^{\text {iii }}$	0.88	2.43	3.256 (3)	158
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2 W^{\text {iv }}$	0.84	2.22	2.987 (2)	152
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}^{1}{ }^{\text {v }}$	0.85	1.91	2.716 (2)	159
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{~N} 7^{\mathrm{vi}}$	0.85	1.84	2.681 (3)	176
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 12^{\text {iv }}$	0.84	1.87	2.683 (2)	163
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {vi }}$	0.95	2.37	3.128 (3)	136
C23-H23 ${ }^{\text {a }} \mathrm{N}^{\text {vii }}$	0.95	2.60	3.525 (3)	164
$\mathrm{C} 33-\mathrm{H} 33 \cdots \mathrm{~N} 1^{\text {iii }}$	0.95	2.57	3.469 (3)	157

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+2,-z+1$; (iii) $-x+1,-y+1$, $-z+1$; (iv) $-x+1,-y,-z$; (v) $-x,-y,-z$; (vi) $-x+1,-y+1,-z$; (vii) $x-1$, $y-1, z$.

All H atoms were clearly seen in a difference Fourier map; $\mathrm{C}-\mathrm{H}$ and (non-amino) $\mathrm{N}-\mathrm{H}$ groups were, however, subsequently idealized at their expected positions and allowed to ride ($\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$). Amino N atoms were in a partially hybridized state, N 6 being mostly $s p^{2}$ and N 2 being mostly $s p^{3}$; the corresponding H -atom geometry around these N atoms followed this scheme, with a distorted planar environment around N6 and an important pyramidalization around N 2 . These H atoms, as well as those corresponding to water molecules, were refined with metric restraints for a few cycles, after which they were allowed to ride. For all H atoms, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}$ (methyl C).

metal-organic compounds

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT$N T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2009).

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge license to the CSD system. We also acknowledge funding by FONDECYT (project No. 1070298).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3130). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. \& Schwalbe, C. H. (1995). Acta Cryst. B51, 1068-1081.

Atria, A. M., Garland, M. T. \& Baggio, R. (2006). Acta Cryst. E62, m3315m3317.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SMART-NT. Version 5-624. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT-NT. Version 6-22a (including SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.
Rizzi, A., Baggio, R., Garland, M. T., Pena, O. \& Perec, M. (2003). Inorg. Chim. Acta, 353, 315-319.
Sakore, T. D., Sobell, H. M., Mazza, F. \& Kartha, G. (1969). J. Mol. Biol. 43, 385-406.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Simundza, G., Sakore, T. D. \& Sobell, H. M. (1970). J. Mol. Biol. 48, 263-278. Singh, P. \& Hodgson, D. J. (1975). Acta Cryst. B31, 845-851.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

